首页 > 师资力量 > 正文

毕春加

作者: 时间:2018-06-08 点击数:

     

 

姓名 毕春加 性别 E-mail chunjiabi@126.com  
民族 专业 计算数学 职称 教授
研究方向 1.有限体积元方法;2.有限元方法3.间断有限元方法。
通信地址 山东省烟台市莱山区MK体育
   
时 间 单位 经 历
1991.09-1993.07 昌潍师专 数学教育,专科。
1993.09-1995.07 曲阜师范大学 数学教育专业,获理学士学位。
1995.09-1998.07 复旦大学 计算数学专业,获理学士学位导师:李立康教授
1998.09-2001.07 复旦大学 计算数学专业,获理学博士学位导师:李立康教授
2001.07-2003.05 山东大学 博士后合作导师袁益让教授
2003.06-2003.10 中国海洋大学 应用数学系,副教授
2003.11- MK体育 MK体育副教授、教授。
讲授课程

本科生《数学分析》、高等数学》计算方法》数学建模》微分方程数值解法》数学实验》数值逼近》、《数值代数

研究生《椭圆问题的有限元方法》、有限体积元方法有限差分方法、《发展方程的有限元方法》

  
指导学生参加全国大学生数学建模竞赛:国家一等奖2(2004年、2009),国家二等奖2(2005年、2009)
   

1.2022年山东省自然科学二等奖,“二阶偏微分方程有限体积元算法的构造、实现及理论研究”。(1/3)

2.2020山东省高等学校科学技术奖一等奖,二阶非线性问题数值方法的构造、分析及实现”。(1/2)

3.2016山东省高等学校科学技术奖一等奖,有限体积元方法的理论研究及应用”。(2/3)

4. 2010年山东省高校优秀科研成果二等奖,有限体积元方法的高性能算法及应用(2/3)

   

1. 2022.01-2024.12主持山东省自然科学基金二阶非线性椭圆方程的多层线性化方法及其自适应算法(ZR2021MA010

2. 2016.01-2019.12主持国家自然科学基金面上项目:两阶非线性椭圆问题自适应有限元方法的多重网格算法(11571297)。

3. 2015.01-2017.12,主持山东省自然科学基金:非线性椭圆问题有限体积元方法的后验误差估计和自适应算法(ZR2014AM003)

4. 2010.01-2013.12,主持山东省自然科学基金:有限体积元方法的后验误差估计和自适应算法(ZR2010AM004)

5. 2009.06-2012.06主持山东省教育厅高等学校科技计划项目:非线性问题的几类数值方法的后验误差估计与自适应算法(J09LA01) 

6. 2007.01-2009.12主持国家自然科学基金青年项目:有限体积元方法的两层网格和多重网格算法(10601045)

7.  2018.01-2021.12,参与国家自然科学基金面上项目:非线性抛物方程有限体积元方法的后验误差估计及自适应算法(11771375第二位

8. 2018.3-2021.6,参与山东省自然科学基金:奇异摄动问题的稳定化局部守恒数值方法及其在多孔介质流中的应用 (ZR2018MA008),第位。

9. 2011.3-2014.3参与山东省教育厅高等学校科技计划项目:非线性抛物型方程的高精度算法及应用(J11LA09

10. 2010.6-2013.6,参与山东省教育厅高等学校科技计划项目:界面问题的高精度有限体积元方法(J10LA01) ,第

主要学术论文

1.Liming Guo, Chunjia Bi, Adaptive finite element method for nonmonotone quasi-linear elliptic problems, Computers and Mathematics with Applications, 93(2021) , 

    94-105.

2.Yuanyuan Zhang, Chuanjun Chen, Chunjia Bi, A quadratic finite volume method for nonlinear elliptic problems, Advances in Computational Mathematics, 47(3)

    (2021), 32.

3.Chunjia Bi, Cheng Wang, Yanping Lin, Two-grid finite element method and its a posteriori error estimates for a nonmonotone quasilinear elliptic problem under 

    minimal regularity of data, Computers and Mathematics with Applications, 76(2018) , 98-112.

4.Chunjia Bi, Cheng Wang, Yanping Lin, A posteriori error estimates of two-grid finite element methods for nonlinear elliptic problems, Journal of Scientific 

    Computing,74(2018),23-48.

5.Guodong Zhang, Jinjin Yang, Chunjia Bi, Second order unconditionally convergent and energy stable linearized scheme for  MHD equations, Advances in

    Computational Mathematics,   44(2018),505-540.

6.Chunjia Bi, Cheng Wang, Yanping Lin, A posteriori error estimates of finite volume element method for second-order quasilinear elliptic problems, International 

    Journal of Numerical Analysis and Modeling, 13(2016), 22-40.

7.Chunjia Bi, Cheng Wang, Y. Lin, Pointwise error estimates and two-grid algorithms of discontinuous Galerkin method for strongly nonlinear elliptic problems,

    Journal of  Scientific  Computing, 2016, 67(1), 153-175.

8.Chunjia Bi, Cheng Wang, Y. Lin, A posteriori error estimates of hp-discontinuous Galerkin method for strongly nonlinear elliptic problems, Computer Methods

    in Applied  Mechanics and Engineering, 297(2015), 140-166.

9.Chunjia Bi and V. Ginting, Global superconvergence and a posteriori error estimates of finite element method for second-order quasilinear elliptic problems, Journal 

    of Computational and Applied   Mathematics. 260(2014), 78-90.

10.Chunjia Bi and V. Ginting, A posteriori error estimates of discontinuous Galerkin method for nonmonotone quasilinear elliptic problems, Journal of Scientific 

      Computing, 55(2013), 659-687.

11.Chunjia Bi, Y. Lin and Min Yang, Finite volume element method for monotone nonlinear elliptic problems, Numerical Methods for Partial Differential Equations,

      29(2013), 1097-1120.

12.Chuanjun Chen, Wei Liu, Chunjia Bi, A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations, Numerical

      Methods for Partial  Differential Equations, 29 (2013), 1543-1562.

13.Chunjia Bi and Yanping Lin, Discontinuous Galerkin method for monotone nonlinear elliptic problems, International Journal of Numerical Analysis and Modeling,

      9(2012), 999-1024.

14.Chunjia Bi and M. Liu, A discontinuous finite volume element method for second order elliptic problems, Numerical Methods for Partial Differential Equations,

      28(2012), 425-440.

15.Chunjia Bi and V. Ginting, Two-grid discontinuous Galerkin method for quasi-linear elliptic problems, Journal of Scientific Computing, 49(2011),311-331.

16.Chunjia Bi and V. Ginting, Finite volume element method for second order quasilinear elliptic problems, IMA Journal of Numerical Analysis,31(2011), 1062-1089.

17.Chunjia Bi and Jiaqiang Geng, Discontinuous finite volume element method for parabolic problems, Numerical Methods for Partial Differential Equations, 

      26(2010), 367-383.

18.Chuanjun Chen, Chunjia Bi, Two-grid methods for characteristic finite volume element solution of semilinear convection–diffusion equations, Applied Mathematics

      and Computation, 217(2010), 1896–1906.

19.Chunjia Bi and V. Ginting, A residual-type a posteriori error estimate of finite volume element method for a quasilinear elliptic problem, Numerische Mathematik,

      114(2009),107-132.

20.Chuanjun Chen, Min Yang, Chunjia Bi, Two-grid methods for finite volume element approximations of nonlinear parabolic equations, Journal of Computational

     and Applied Mathematics, 228(2009), 123-132.

21.Min Yang, Chunjia Bi, Jiangguo Liu, Postprocessing of a finite volume element method for semilinear parabolic   problems, ESAIM: Math. Model. 

     Numer. Anal. (M2AN)  43(2009) 957-971.

22.Chunjia Bi, Wenbin Chen,Mortar finite volume element method with Crouzeix–Raviart element for parabolic problems,Applied Numerical Mathematics, 

      58(2008),1642-1657.

23.Chunjia Bi, Superconvergence of mixed covolume method for elliptic problems on triangular grids Journal of Computational and Applied Mathematics 216

      (2008) 534-544.

24.Hongxing Rui, Chunjia Bi, Convergence analysis of an upwind finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite

     elliptic problems, Frontier of Mathematics in China, 3(4)(2008), 563-579.

25.Chunjia Bi and V.Ginting, Two-grid finite volume element method for linear and nonlinear elliptic problems, Numerische Mathematik, 108 (2007), 177-198 .

26.Chunjia Bi and Hongxing Rui, Uniform convergence of finite volume element method with Crouzeix-Raviart element for non-selfadjoint and indefinite

      elliptic problems, Journal of Computational and Applied Mathematics 200(2007), 555-565.

27.Chunjia Bi, Superconvergence of finite volume element method for a nonlinear elliptic problem, Numerical Methods for Partial Differential Equations,

      23(2007)220-233.

28.Chunjia Bi, Mortar upwind finite volume element method for convection diffusion problems, Applied Mathematics and Computation 183 (2006) 831–841.

29.Chunjia Bi, Mortar upwind finite volume element method with Crouzeix-Raviart element for parabolic convection diffusion problems, Numerical Mathematics. 

      A Journal of Chinese  Universities, (English Series), 15(2006)82-96.

30.Chunjia Bi and Danhui Hong, Cascadic multigrid method for the mortar element method for P1 nonconforming element, Journal of Computational .Mathematics,

       23(2005)425-440.

31.Chunjia Bi, Maximum norm estimates for finite volume element method for non-selfadjoint and indefinite elliptic problems, Northeastern Mathematical Journal,

      21(2005).323-328.

32.Xiaohan Long, Chunjia Bi, Uniform convergence for finite volume element method for non-selfadjoint and indefinite elliptic problems, Northeastern Math. J.,

      21:1(2005)

33.Chunjia Bi and Likang Li, Cascadic multigrid method for isoparametric finite element with numerical integration, Journal of Computational Mathematics,

      22(2004)123-136.

34.Chunjia Bi and Likang Li, Mortar finite volume method with Adini element for biharmonic problem, Journal of Computational Mathematics, 22(2004)475-488.

35.Chunjia Bi and Likang Li, The mortar finite volume method with the Crouzeix-Raviart element for elliptic problems, Computer Methods in Applied Mechanics

      Engineering, 192 (2003)15-31.

36.Chunjia Bi and Likang Li, Multigrid for the mortar element method with locally P1 nonconforming elements, Numerical Mathematics. (A Journal of Chinese

      Universities), 2003,  12(2), 193-204.

37.Chunjia Bi and Chenwei Du, Theoretical analysis of ZZ superconvergent patch recovery for the isoparametric bilinear finite element, Journal of Fudan University,

     (Natural Science), 2000, 39(1), 68-72.

38.Chunjia Bi and Likang Li, Superconvergent Recoveries of Carey nonconforming element approximations for non-selfadjoint and indefinite elliptic problems, 

      East-West Journal of Numerical Mathematics, 1999, 7(1),1-11.

39.Chunjia Bi and Likang Li, Superconvergence analysis of Least-square mixed finite element method for second order nonselfadjoint two point boundary value

     problems, Communications in Numerical Methods in Engineering. 1998, 14, 1027-1037.

40.Lin Zhang and Chunjia Bi, A superconvergent estimate of Wilson-like elements, Numerical Mathematics. (A Journal of Chinese Universities), 1997, 6(1),

      142-151.   



 

Copyright © 2025 All Rights Reserved SPORT-MK体育国际|恩波利足球俱乐部赞助
版权所有  鲁ICP备15000288 号

Baidu
sogou