首页 > 师资力量 > 正文

郑甲山

作者: 时间:2021-11-22 点击数:

 

姓名

郑甲山

性别

出生年月

1984.10

 

民族

政治面貌

中共党员

职称/职务

教授

毕业学校

北京理工大学

学位

博士

专业

应用数学

研究方向

流体力学与偏微分方程理论

通信地址

中国山东省烟台市莱山区清泉路30号

邮编

264005

联系电话

 

E-mail

zhengjiashan2008@163.com

   

时 间

单位

经 历

2004.09-2008.06 

临沂大学

理学院数学与应用数学专业本科,获理学学士学位。

2008.09—2011.06

东北电力大学

理学院应用数学数学专业硕士研究生,获理学硕士学位。

导师:徐中海教授。

2011.09—2015.06

北京理工大学

数学与统计学院应用数学数学专业博士研究生,获理学博士学位。

导师:王一夫教授。

2019.09—2021.07

中国人民大学

MK体育在职博士后。

合作导师:柯媛元教授。

2015.07-2021.01

鲁东大学数学与统计学院

历任讲师、副教授

2021.01至今

MK体育

历任副教授、教授

   

数学分析、常微分方程、高等数学、实变函数、现代偏微分方程导论、线性偏微分方程、反应扩散方程等

业绩综述

博士生导师和硕士生导师。山东省杰出青年基金和山东省优秀青年基金获得者,获得首届山东数学会青年数学奖主要面向生物科学与力学及物理学、医学与流体动力学等领域偏微分方程的数学问题,主要开展趋化-(纳维)-斯托克斯相关模型、非线性抛物型方程与流体动力学方程等学科领域的热点问题研究。主持(完成)山东省杰出青年基金、山东省优秀青年基金、国家自然科学基金、中国博士后特别资助和博士后面上资助、山东省自然科学青年基金等多项基金。并以第一或者通讯作者在《CVPDE(3篇)、《M3AS(1篇)、《JDE(13)、《Nonlinearity(2篇)等顶级期刊发表SCI论文80余篇,包含4篇 ESI 高被引论文,连续三年入选“全球前2%顶尖科学家榜单”。已被包括国际数学家大会45分钟报告人、长江学者特聘教授、顶级期刊《M3AS》主编、《JDE》等著名杂志编委在内的多名数学专家引用总次数1000余次。应国际物理科学院院士Hari M. Srivastava教授所邀在 Springer杂志合作撰写趋化-N-S相关模型的专著。应邀担任国际期刊《American Journal of Applied Mathematics》、《Mathematics and Computer Science 》和《World Journal of Mathematics and Statistics》和《Applied and Computational Mathematics》的编委;应邀参加中国数学会第十三次全国代表大会并作报告;应邀担任美国《Mathematical Reviews》评论员和德国《数学文摘》评论员。

1、国际SCI杂志Journal Mathematics and Computer Science的客座主编;

2、美国《数学评论》评论员, 编号123449

3、《德国数学文摘》评论员, 编号18029

4、应邀担任《JDE》、《Nonlinearity》、《DCDS》《Journal of Mathematical Analysis and Applications》、《Nonlinear Analysis : Theory, Methods & Applications》等几十种SCI杂志的特约审稿人;

5、国际Mathematics and Computer ScienceApplied and Computational Mathematics杂志的编委

6、国际American Journal of Applied Mathematics杂志的编委

7Asian Journal of Control》、Math. Methods Appl. Sci.》等杂志的最佳审稿人;

82017年,申请人被邀请在美国数学研究所(AIMS)旗下的动力学国际会议上组织一个特别会议;

9、指导学生获第七届山东省师范类高校学生从业技能大赛一等奖,本人荣获优秀指导教师奖;

10、应邀参加中国数学会第十三次全国代表大会并做分组报告

11、应邀担任Bentham Science杂志社的图书编辑(Book Editor

12、连续三年入选“全球前2%顶尖科学家榜单

13、首届山东数学会青年数学奖(每两年一届,每次不超过4人)

14、应邀担任长江学者特聘教授等人才类和科学基金的函评专家

1. 2022.9山东省杰出青年基金项目:来源于流体力学的几类生物趋化数学模型的理论分析。位次1/11,项目号:ZR2022JQ06,主持人,100万,在研。

2.山东省省属高校优秀青年基金:与chemotaxis-(Navier)-Stokes相关的模型的理论分析及其应用,批准号:ZR2018JL005,主持人,24万,2018年3月--2020年12月; 结题;

3.国家自然科学青年基金:与趋化性系统相关的模型的理论研究,批准号: 11601215,2017年1月-2019年12月,主持人,19万,结题;

4. 第12批博士后特别资助: 凯勒-西格尔(-纳维)-斯托克斯系统若干问题的研究 ,批准号:2019T120168,2019年7月-2021年9月,主持人,18万,结题;

5.山东省自然科学青年基金: 与趋化性机制相关的模型解的定性分析,批准号:ZR2016AQ17,2016年7月-2018年7月,主持人,9万,结题;

6.第65批博士后基金,批准号:2019M650927,2019年7月-2020年9月,主持人,8万,结题。

 

 

[81]Q. Pu, H. Tang, J. Zheng, Smooth solution in an N-dimensional chemotaxis model with intraguild predation, Mathematical Methods in the Applied Sciences, 2025.

[80]Qi D, Tao X, Zheng J. Boundedness of the solution to a higher-dimensional triply haptotactic cross-diffusion system modeling oncolytic virotherapy[J]. Journal of Evolution Equations, 2025, 25(1): 9.

[79] Zhao F, Zheng J, Li K. Global existence and boundedness to an ND chemotaxis-convection model during tumor angiogenesis[J]. Nonlinear Analysis: Real World Applications, 2025, 82: 104257.

[78] Zheng Jiashan, Yao Zheng'an2., Ke YuanyuanGlobal existence and boundedness for an attraction-repulsion chemotaxis system CIENTIA SINICA Mathematica, https://doi.org/10.1360/SSM-2024-0090

[77] Qi D, Zheng J. Some progress for boundedness and stabilization in an $ N $-dimensional attraction-repulsion chemotaxis system with logistic source[J]. Communications on Pure and Applied Analysis, 2024: 0-0.

[76] Zheng, Jiashan, and Xiuran Liu. "Blow-up prevention by indirect signal production mechanism in a two-dimensional Keller–Segel–(Navier–) Stokes system." Zeitschrift für angewandte Mathematik und Physik 75.5 (2024): 1-34.

[75] Zheng, Jiashan, and Jianing Xie , "Some further progress for boundedness of solutions to a quasilinear higher–dimensional chemotaxis–haptotaxis model with nonlinear diffusion." Discrete and Continuous Dynamical Systems 44.1 (2024): 18-60.

[74] Jiashan Zheng, Pengmei Zhang, Xiuran Liu,"Some progress for global existence and boundedness In a multi-dimensional parabolic–elliptic two-species chemotaxis system with indirect pursuit-evasion interaction." Applied Mathematics Letters (2023): 108729.

[73] Jiashan Zheng,Xiuran Liu, Pengmei Zhang, Existence and Boundedness of solutions for A parabolic-elliptic Predator-Prey chemotaxis system, Discrete and Continuous Dynamical Systems-B,28(2023), 5437-5446.

[72] Jiashan Zheng, Xiuran Liu, Pengmei Zhang,Boundedness of solutions for parabolic-elliptic predator-prey chemotaxis-fluid system with logistic source term, J. Differ. Equ., 383(2024), 96-129.

[71] Jiashan Zheng, Xiuran Liu, Pengmei Zhang, Some new results for the boundedness of solutions for a parabolic-elliptic predator-prey chemotaxis system, Discrete and Continuous Dynamical Systems-B,   (2023): 0-0.

[70] Jiashan Zheng and Yuanyuan Ke,Boundedness and large time behavior of solutions of a higher-dimensional haptotactic system modeling oncolytic virotherapy, Mathematical Models and Methods in Applied Sciences, 33(2023) 1875–1907.

[69] Jianing Xie ,Jiashan Zheng, A New Result for Global Existence and Boundedness in a Three-Dimensional Self-consistent Chemotaxis-Fluid System with Nonlinear Diffusion. Acta Applicandae Mathematicae 183(2023) 5.

[68]Haotian Tang, Jiashan Zheng, Kaiqiang Li, Global bounded classical solution for an attraction–repulsion chemotaxis system, Applied Mathematics Letters, 138(2023), 108532.

[67]Jiashan ZhengPengmei ZhangXiuran Liu,Global existence and boundedness for an N-dimensional parabolic-elliptic chemotaxis-fluid system with indirect pursuit-evasion, Journal of Differential Equations, 367(2023), 199-228.

[66]Haotian Tang, Jiashan Zheng, Kaiqiang Li, Global and bounded solution to a quasilinear parabolic-elliptic pursuit-evasion system in N-dimensional domains, Journal of Mathematical Analysis and Applications,2023, 127406.

[65]Jiashan ZhengXiuran LiuPengmei Zhang, EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR A PARABOLIC-ELLIPTIC PREDATOR-PREY CHEMOTAXIS SYSTEM, Discrete and Continuous Dynamical Systems-B, 28(2023)5437-5446.

 

[64] Jiashan Zheng, Pengmei Zhang,Blow-up prevention by logistic source an N-dimensional parabolic-elliptic predator-prey system with indirect pursuit-evasion interaction, Journal of Mathematical Analysis and Applications, 519( 2023), 126741

2022

[63] Jiashan Zheng, and Yuanyuan Ke  Blow-up prevention by logistic source in an N-D chemotaxis-convection model of capillary-sprout growth during tumor angiogenesis[J]. Communications on Pure and Applied Analysis, 2022.

[62] Kaiqiang Li, Jiashan Zheng, An optimal result for global classical and bounded solutions in a two-dimensional Keller-Segel-Navier-Stokes system with saturated sensitivity[J]. Communications on Pure and Applied Analysis, 2022.

[61] Jiashan Zheng, Jianing Xie , Global classical solutions to a higher-dimensional doubly haptotactic cross-diffusion system modeling oncolytic virotherapy[J]. Journal of Differential Equations, 2022, 340: 111-150.

[60]Xu Liu , Jiashan Zheng, Convergence rates of solutions in apredator-preysystem withindirect pursuit-evasion interaction in domains of arbitrary dimension[J]. Discrete and Continuous Dynamical Systems-B, 2022..

[59] Jiashan Zheng, and Yuanyuan Ke ,Further study on the global existence and boundedness of the weak solution in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 115: 106732.

[58] Jiashan Zheng, Dayong Qi  Global existence and boundedness in an N-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion and rotation[J]. Journal of Differential Equations, 2022, 335: 347-397.

[57] Yuanyuan Ke,Jiashan Zheng,Large time behavior of solutions to a 3D Keller-Segel-Stokes system involving a tensor-valued sensitivity with saturation, Acta Mathematicae Applicatae Sinica, English Series, 38 (2022) (2022).

[56] Pengmei Zhang, Jiashan Zheng,. Boundedness and stabilization of a three-dimensional parabolic-elliptic Keller-Segel-Stokes system[J]. Discrete and Continuous Dynamical Systems,42(2022),4095–4125.

[55] Jiashan Zheng, Jianing Xie ,Global classical solutions of Keller-Segel-(Navier)-Stokes system with nonlinear motility functions, Journal of Mathematical Analysis and Applications, 514(2022), 126272.

[54] Jiashan Zheng, Dayong Qi  and Yuanyuan Ke , Global Existence, Regularity and Boundedness in a Higher-dimensional Chemotaxis-Navier-Stokes System with Nonlinear Diffusion and General Sensitivity. Calculus of Variations and Partial Differential Equations, 2022, 61(4): 1-46.

[53] Jiashan Zheng, and Yuanyuan Ke ,Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Journal of Differential Equations 328 (2022): 228-260.

[52] Jiashan Zheng , Eventual smoothness and stabilization in a three-dimensional Keller–Segel–Navier–Stokes system with rotational flux, Calculus of Variations and Partial Differential Equations, 61(2022), 1-34. 该论文为ESI高被引论文

[51]Dayong Qi and Jiashan ZhengA new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux termZ. Angew. Math. Phys. (2021) 72:88.

[50]Jianing Xie , Jiashan Zheng , A new result on existence of global bounded classical

solution to a attraction-repulsion chemotaxis system

with logistic source, Journal of Differential Equations 298 (2021) 159181 (SCI 大类二区权威IF 2.26).

[49] Jiashan Zheng , Yuanyuan Ke, Global bounded weak solutions for a chemotaxis-Stokes

system with nonlinear diffusion and rotation, Journal of Differential Equations, 289 (2021) 182235. (SCI 大类二区权威IF 2.26).

[48] Zhi-An Wang, Jiashan Zheng ,

Global Boundedness of the Fully Parabolic Keller-Segel

System with Signal-Dependent Motilities, Acta Appl Math,  (2021) 171:25.  (SCI 大类三区权威IF 1.6).

[47]Jiashan Zheng  , Global Classical Solutions and Stabilization in a Two-Dimensional Parabolic-Elliptic KellerSegelStokes SystemJournal of Mathematical Fluid Mechanics, 23(2021), 1--25. (SCI 大类三区权威IF 1.6).

 

[46]Jiashan Zheng  , Global existence and boundedness in a threedimensional

chemotaxisStokes system with nonlinear diffusion

and general sensitivity Annali di Matematica Pura ed Applicatahttps://doi.org/10.1007/s10231-021-01115-4 (SCI 大类二区权威IF 2.0).

[45]Ling LiuJiashan Zheng  , Gui BaoWeifang Yan, A new (and optimal)

result for the boundedness of a solution of a quasilinear chemotaxis–haptotaxis model

(with a logistic source), Journal of Mathematical Analysis and Applications,

491(2020), 124231.

[44]Jiashan Zheng  ,A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilizationJournal of Differential Equations,2722021,  164-202 (SCI 大类二区权威IF 2.26). 该论文为ESI高被引论文

[43] Ling Liu郑甲山*, A new result for boundedness in the

quasilinear parabolic–parabolic Keller–Segel model (with logistic source Computers & Mathematics with Applications, 2019(4)(79)( 2020), 1208-1221 SCI 大类二区IF 2.64).

[42] 郑甲山, Yuanyuan KeBlow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, Journal of Differential Equations, 11(268)(2020), 7092-7120 (SCI 大类二区权威IF 2.26).

 

[41] Ling Liu郑甲山*, Gui BaoGlobal weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Discrete and Continuous Dynamical Systems-Series B, 25(2020),  3437-3460. (SCI 大类IF 1.12).

 

[40] Tian Xiang, 郑甲山*, A new result for boundedness of solutions to a chemotaxis--haptotaxis model  with/without sub-logistic source  Nonlinearity2019, 32(12): 4890. (SCI大类二区权威 IF 2.06).

 

[39] Yuanyuan Ke, 郑甲山*, An optimal result for global existence  in a three-dimensional Keller--Segel--Navier--Stokes system involving tensor-valued sensitivity with saturation, Calculus of Variations and Partial Differential Equations, 2019, 58(3): 109. (SCI大类二区权威IF 1.738).

 

[38] 郑甲山*, Yuanyuan Ke,  Large time behavior of solutions to a fully parabolic chemotaxis--haptotaxis model in $N$ dimensions, Journal of Differential Equations 266 (2019) 19692018. (SCI大类二区权威IF 2.26).

[37]郑甲山*An optimal result for global existence and boundedness in a three-dimensional  Keller-Segel-Stokes system with nonlinear diffusionJournal of Differential Equations267(4) (2019), 2385-2415. (SCI大类二区权威IF 2.26). 该论文为ESI高被引论文

 

[36] Xinchao Song郑甲山*A new result for global solvability and boundedness in the N-dimensional quasilinear chemotaxis model with logistic source and consumption of chemoattractant, Journal of Mathematical Analysis and Applications,(475)(1)(2019),895-917. (SCI大类三IF 1.31).

[35] Ling Liu,郑甲山*,  Global existence and boundedness of solution of a  parabolic--ODE--parabolic chemotaxis--haptotaxis model with (generalized) logistic source,  Discrete and Continuous Dynamical Systems-Series B, 24.7 (2019): 3357-3377. (SCI大类三IF 1. 12).

[34] YuanYuan Ke 郑甲山*,  A note for global existence of a

two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,    Nonlinearity, 31(2018) 4602–4620 (SCI类二区权威IF 2.06).

[33] 郑甲山*, Yanyan Li A new result for global existence and boundedness of solutions to a parabolic--parabolic Keller--Segel system with logistic source, Journal of Mathematical Analysis and Applications, 462(1)(2018), 1--25. (SCI 类三区IF 1.31).

[32]郑甲山* , Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with nonlinear diffusionJournal of Differential Equations, 263(2017), 2606-2629. (SCI 类二区权威IF 2.26).

[31]郑甲山* , Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis--haptotaxis model with generalized logistic source, Nonlinearity, 30(2017) ,1987-2009 . (SCI 类二区权威IF 2.06) 

[30] 郑甲山*,Boundedness of solutions to a quasilinear higher-dimensional

chemotaxis-haptotaxis model with nonlinear diffusion, Discrete and Continuous Dynamical Systems- Series A, (37)(1)(2017), 627-643. (SCI 类三区IF 1.35).

[29] 郑甲山*, Yifu Wang, A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractantDiscrete and Continuous Dynamical Systems - Series B, (22)(2)(2017), 669-686. (SCI大类三IF 1. 12). 

[28]郑甲山*, A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logisticsource,Zeitschriftfür Angewandte Mathematik und Mechanik, (97)(4)(2017) , 414-421. (SCI大类二IF 1.332).

[27]郑甲山*, Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear a logistic sourceJournal of Mathematical Analysis and Applications, 450(2017), 1047-1061. (SCI 类二区IF 1.064).

[26]郑甲山*,Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topological methods in nonlinear analysis, (49)(2)(2017), 463-480. (SCI 类三区IF 0. 667).

[25]郑甲山*, Yifu Wang, Boundedness and decay behavior in a higher dimensional quasilinear chemotaxis system with nonlinear logistic source, Computers & Mathematics with Applications, 72(10)(2016), 2604-2619. (SCI 类三区IF 1.531).

[24]郑甲山*, Critical blow-up exponents for a non-local reaction-diffusion equation with nonlocal source and interior absorption,  Nonlinear Analysis-Modelling and Control  journal, 21(5)(2016), 600-613. (SCI 类二区IF 2.03).

[23]郑甲山*, Boundedness in a three-dimensional chemotaxis--fluid system involving the tensor-valued sensitivity with saturation, Journal of Mathematical Analysis and Applications, 442(1) (2016), 353-375. (SCI 大类三区IF 1.120).

[22]Yifu Wang, 郑甲山*, Periodic solutions to  a class of  biological diffusion models with hysteresis effect, Nonlinear Analysis: Real World Applications, (27)(2016)297--311. (SCI 类一区IF   IF 2.519).

[21]郑甲山, The bang-bang principle of time optimal controls for the

Kuramoto-Sivashinsky-KdV equation with internal control, International Journal of Robust and Nonlinear Control, (26)20161667–1685.   (SCI 类二区IIF 3.176).

[20]郑甲山*,  Yifu Wang, Boundedness of solutions to a quasilinear chemotaxis--haptotaxis model, Computers & Mathematics with Applications, 71(2016), 1898--1909.  (SCI  IF 1.697).

[19]郑甲山*, Optimal control problem for  Lengyel--Epstein model with  obstacles and state constraints, Nonlinear Analysis-Modelling and Control, 21(1)(2016), 18--39. (SCI 类二区 IF1.099).

 

[18]郑甲山*, Uniform blow-up rate for nonlocal diffusion equations with nonlocal nonlinear source, (39)(1), 2016, Tokyo Journal of Mathematics. (SCI 大类四区IF 0.219)

[17]Ji LiuYifu Wang郑甲山Periodic solutions of a multi-dimensional Cahn-Hilliard equationElectronic Journal of Differential Equations(42)(2016), 1--23. (SCI 类四区IF0.524).

[16]Ji Liu郑甲山,Yifu Wang Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Zeitschrift für angewandte Mathematik und Physik, 67(2) ,2016 DOI: 10.1007/s00033-016-0620-8. (SCI IF1.109).

[15] Yifu Wang, 郑甲山, Periodic solutions to the Cahn--Hilliard equation with constraint, Mathematical Methods in the Applied Sciences39(4)(2016), 649--660. (SCI 大类三区IF 1.58)

[14]郑甲山, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, Journal of Differential Equations, 259(1)(2015), 120--140.  (SCI 大类二区权威IF 1.680). 该论文为ESI高被引论文

[13]郑甲山, Yifu Wang, Well-posedness for a class of biological diffusion models with hysteresis effect, Zeitschrift für angewandte Mathematik und Physik, 66(3)(2015), 771--783. (SCI 类二区 IF 1.109).

[12]郑甲山, Boundedness of solutions to a quasilinear parabolic--parabolic Keller--Segel system with logistic source, Journal of Mathematical Analysis and Applications, 431(2),2015, 867–888. (SCI 类二区  IF 1.120).

[11]郑甲山, Yifu Wang, Periodic solutions of non-isothermal phase separation models with constraint, Journal of Mathematical Analysis and Applications, 432(2015), 1018--1038. (SCI类二区 IF 1.120).

[10]郑甲山, Yuanyuan Ke, Yifu Wang, Periodic solutions to a heat equation with hysteresis in the source term, Computers & Mathematics with Applications, 69(2)(2015), 134--143.  (SCI 类三区 IF 1.697).

[9]郑甲山*, Optimal controls of  multi-dimensional modified Swift-Hohenberg equation, International Journal of Control, 88(10)20152117--2125. (SCI 类三区 IF 1.654 ).

[8] 郑甲山*, Yifu Wang,Optimal control problem for Cahn-Hilliard equations with state constraint, Journal of Dynamical and Control Systems, 21(2)(2015),  257--272. (SCI类四区  IF 0.492).

[7]Ji Liu, 郑甲山, Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source,  Czechoslovak Mathematical Journal, 65(4)2015,  1117--1136. (SCI类四区 IF 0.288).

[6]郑甲山*, Yifu Wang, Boundedness of solutions to a quasilinear parabolic—parabolic Keller--Segel system with supercritical sensitivity and logistic source,8th International Congress on Industrial and Applied Mathematics. ( EI).

[5]郑甲山*, Time optimal controls of the Lengyel-Epstein model with internal control, Applied Mathematics & Optimization, 70(2)(2014),  345--371. (SCI 类三区IF 0.591).

[4] 郑甲山*, Time optimal controls of the Cahn--Hilliard equation with internal control, Optimal Control Applications and Methods, 36(4)2014, 566–582 . (SCI类三区IF 0.903).

[3]郑甲山*, Yifu Wang, Time Optimal Controls of the Fitzhugh-Nagumo Equation with Internal Control, Journal of Dynamical and Control Systems,19(4)(2013), 483--501. (SCI 类四区IF 0.492).

[2]Zhonghai Xu , 郑甲山, Zhenguo Feng, Existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms. , 74(3)( 2011), 739--756. (SCI类二区 IF 1.327).

 

[1]Zhonghai Xu , Zhenguo Feng, 郑甲山, Existence and regularity of solution of mixed boundary value problem of  Keldysh-equation with nonlinear absorb term NonlinearAnalysis: Theory, Methods & Applications, 74(1) (2011), 1--8. (SCI类二区 IF 1.327).

 

 

     

已经指导了多名研究生和本科生:其中本科生唐昊天以第一作者发表SCI论文2篇,并获得山东省优秀毕业生;

研究生张朋梅以第一作者或者通讯作者发表SCI论文4篇获得2021-2022年研究生学业奖学金一等奖,2022-2023年国家奖学金,2022-2023年优秀研究生,MK体育2023年研究生科研创新基金(重点项目)和山东省优秀毕业生;

研究生刘秀冉以第一作者或者通讯作者发表SCI论文3篇,获得2022-2023年研究生学业奖学金一等奖,2022-2023年优秀研究生。2023-2024年国家奖学金,2022-2023年优秀研究生,MK体育2024年研究生科研创新基金(重点项目)

欢迎有志向攻读名校硕士和博士学位,具有强烈的求知欲和驱动力且吃苦耐劳、能坐得住、本科和研究生有良好数学和计算机基础的同学加盟我们课题组。课题组具有博士招生资格。同时,本课题组与中国人民大学、北京理工大学等多所国内外高校的专家有着紧密的合作关系,将会根据学生的能力、兴趣推荐到国内外各大高校攻读硕士、博士学位。

 

Copyright © 2025 All Rights Reserved SPORT-MK体育国际|恩波利足球俱乐部赞助
版权所有  鲁ICP备15000288 号

Baidu
sogou